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Abstract 
This work investigates the MHD flow of a third-grade fluid in a porous channel under theinfluence of 
aninduced magnetic field and viscous dissipation. Perturbation technique is applied to analytically 
solvedthe set of coupled nonlinear ordinary differential equations that govern the flow and solutions 
expressionfor velocity field, temperature field and induced magnetic field are accomplished. The effects of 
nondimensional parameters on velocity field, induced magnetic field, heat transfer and skin friction 
aredisplayed inform of graphs and table. From the results, it is realised that the effects of suction 
parameter are to increase the velocity and temperature field while increases in magnetic parameter and 
magneticPrandtl number reduces the velocity field and increases the induced magnetic field. 
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Introduction 
The study of MHD flow of third grade fluid with the occurrence of an apparent external magnetic field 
has gained appreciable awareness in modern research because of its relevance in science, engineering 
and technology. Some of these applications can be found in materials manufactured by extraction 
process especially in polymer processing, micro fluids, geological flows within the earth’s mantle, the 
flow of synovial fluid in human joints as well as in the drilling of oil and gas well. Hayat, Kara and 
Momoniat [1] studied the flow of a third fluid on a porous wall using Lie group method. They reduced 
the third order differential equation governing the flow to a second order differential equation, which is 
then solved using perturbation method. 
Siddique, Zeb, Ghori, and Behaibt [2] studied hydrodynamics third grade fluid between to parallel plates 
with heat transfer. They considered and treated three different problems, the poiseuille flow, the 
couette flow and the poiseuille-couette flow. Aiyesimi, Okedayo and Lawal [3] extend this work (i.e. [2]) 
in two ways (i) by considered that the fluid is flowing down through inclined parallel channel and (ii) the 
system was under the influence of magnetic field. They analysed the effect of magnetic field on the 
velocity and temperature of the fluid.   

In all the above studies¸ the authors have considered a very small magnetic Reynolds number thereby 
neglected magnetic induction effects in order to make the mathematical analysis of the problem as 
simple. A study on hydromagnetic free convective flow has been presented by Ghosh, Beg and Zuesco 
[5] by taking into account the effect of induced magnetic field. Orhan and Ahmet [7] examined the 
radiation effects on the oscillatory fluid flow of an absorbing or emitting gray gas with induced magnetic 
field and the solutions were obtained by perturbation method. The numerical study of the 
hydromagnetic free convective flow in the presence of an induced magnetic field has been performed 
by Sarveshanand and Singh [8]. In most of these studies only the hydromagnetic flow of an electrically 
conducting and viscous incompressible fluid are considered. Thus, in this paper, the non-Newtonian 
MHD flow of a third-grade fluid through a parallel porous channel with induced magnetic field and 
viscous dissipation are considered. The governing equation which includes momentum, magnetic 
induction and energy equation have been solved analytically by perturbation method. Further the 
expression for the induced current density and skin friction are obtained. The effect of various physical 
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parameters on the velocity, the induced magnetic field, the temperature, the induced current density 
profile is shown graphically while that of the skin friction are tabulated. 

Description of the Problem 
We consider a steady MHD flow of a third-grade fluid through an infinite porous channel. The upper and 

lower channel are at hy   and hy   respectively in cartesian coordinate system with the x - axis 

parallel to the direction of the flow. This problem is modelled by confine the study to the region 

hy 0  and considers the flow to be symmetric about the centreline (i.e 0y ) of the channel.In 

driven the flow, a uniform magnetic field of strength 0H  is applied perpendicular to the channel along 

the transverse direction with the consideration of both magnetic Reynolds number and induced 

magnetic field xH  .  There is cross flow due to a uniform injection of the fluid at one channel which 

equal to constant suction of velocity 0v  at the other channel. It is assumed that the channel is 

maintained at a constant temperature T  higher than the ambient temperature 
T . The effect of 

buoyant forces and gravity are neglected. With the above assumptions, the governing equations of the 
flow are given by 
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Subject to the boundary conditions 

 :0y  0u , 0xH , wTT          

 y : 0Uu  ,  0xH ,  
 TT       (6) 

where pc is the specific heat capacity, K  denote thermal conductivity,   is the density of the fluid, 3  

is the third grade fluid parameter. 
Using the following non-dimensional parameters 
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The governing equation in non-dimensional form have taken the form 
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with the corresponding boundary conditions in non-dimensional form as 

 :0y  ,0u  0B , 1T       (10)  

 :1y  ,1u  0B , 0T       (11) 

Method of Solution 

Equation (7) – (9) with boundary condition (10) and (11) are solved by taken    as a small 

parameter 

and apply the perturbation method. 
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Substituting equation (12) – (14) into equation (7) - (11) and collect the lie terms base on the power of 

  and neglecting term of  2O , the following ordinary differential equations are obtained 
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 :0y  ,01 u 01 B , 01 T      (23) 

 :1y  ,01 u  01 B , 01 T      (24) 

Equations (15)-(17) and (20)-(22) with boundary conditions (18), (19) and (23), (24) respectively are 

coupled system of ordinary differential equation (ODE) with constant coefficient. These systems of ODE 

are separately solved analytically by theory of simultaneous ODE and the solution are given as follows 
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Equations (25) - (30) are substituted into equations (12) – (14) to obtain the solution for )(),( yByu and 

)(yT which are presented in form of graphs. The induced current density is given by  
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The parameters 118321 ,,,, aaaa   and 12321 ,,,, cccc   are defined in the appendix. 
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Results and Discussion 
In this section, the investigation of non-Newtonian MHD flow of a third-grade fluid in a porous channel 
under the influence of an induced magnetic field and viscous dissipation are discussed. The computed 
results in form of graphs and tables of velocity profile ),(yu induced magnetic field ),(yB temperature 

profile )(yT  and skin friction 10 ,   respectively are produced for various governing flow parameters. 

The effect of the suction parameter ( 0v ), magnetic field parameter ( M ), induced magnetic parameter (

MP ) and Prandtl number ( rP ) on flow are analysed.  

Figure 1 - 3 show the effect of various values of Mv ,0 and MP on velocity distribution respectively. 

Figure 1 shows the effect of 0v  on velocity profile when 5.0,5.0  MPM  and 001.0 . It is notice 

that the velocity increases with increase in 0v  due to the suction at lower channel. Figure 2 presents 

velocity profile due to the variation of magnetic field parameter M when 5.0,0.10  MPv  and

001.0 at various cross-sections of the channel.  It is observed that )(yu  increases as M increases 

due to the suction at lower channel and later decreases due to increasing of magnetic damping force on  
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Figure 1 Velocity profile )(yu  for different values of 0v  

 

  

 

  

 

 

 

 

Figure 2 Velocity profile )(yu  for different values of M  

 

 

 

 

 

Figure 3 Velocity profile 

)(yu  for different 

values of 
MP  
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)(yu  at upper channel. This is illustrated by the crossing of the curve )(yu  for various values of M .The 

effect of magnetic Prandtl number MP  on velocity profile )(yu are presented in Figure 3 when 

5.0,0.10  Mv  and 001.0 . It is noticed that )(yu  slightly accelerate as MP   increases and later 

reduce slightly towards the upper channel. Here, the slightness increments and decrements are due to a 

weak magnetic field imposed on )(yu .  

 

 

 

 

 

 

 

 

   Figure 4 Induced magnetic field )(yB  for different values of 
0v  

  

 

 

 

 

 

 

 

 

Figure 5 Induced magnetic field )(yB  for different values of M  
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   Figure 6 Induced magnetic field )(yB  for different values of 
MP  

Figure 4 - 6 describe the effect of various values of Mv ,0 and MP on induced magnetic field 

respectively. 

Figure 4 shows the distribution of the induced magnetic field )(yB  with the suction parameter 0v  for 

5.0,5.0  MPM  and 001.0 . Initially, it is noticed that )(yB are asymmetric about 0y

because of the suction at the lower channel but as 0v  increases, )(yB decrease due to the rising in 

induced magnetic flux for all distances into the boundary layer, transverse to the channel. Figure 5 and 6 

depicts )(yB  with M  when 5.0,0.10  MPv , 001.0  and MP when 0.5,0.10  Mv ,

001.0 respectively. It is observed the )(yB  increases when M and MP  increases. This is cause by 

induced magnetic field which produces its own magnetic field in the fluid resulting to modification of 

original magnetic field. The flow in magnetic field generates a mechanical force which modifies the 

motion of the fluid. 
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Figure 7 Temperature profile )(yT  for different values of 
0v  

Figure 7 and 8 illustrates the effect of various values of 0v and rP  on temperature profile respectively. 

In figure 7, it is seen that, temperature profile )(yT  decreases with increase in suction parameter 0v  

due to due to the convection of the fluid from regions in the lower half to centre which has higher fluid 

speed. Similarly, from figure 8, it is noticed that the increases rP  causes decreases in )(yT . This is 

because of decreasing thermal boundary layer thickness which reduces the average temperature within 

the boundary layer. 

 

 

 

 

   

 

 

 

 Figure 8 Temperature profile )(yT  for different values of 
rP  

The effects of 0v , M  and MP  on the skin friction on the channels are shown in the Table 1. This table 

clearly shows the skin friction on both part of the channel increases with increase in 0v , although 

negatively increases on the channel 1y . Similarly, it is notice that as M  and MP  increases, the skin 

friction increases at 0y  and decreases negatively at 1y  

Table 1 Effect of suction parameter 0v , magnetic field parameter M and magnetic Prandtl number MP  

  on skin friction  

0v  
001.0007.0

,7.0,5.0,5.0





andBr

PPM rM  M  
001.0007.0

,7.0,5.0,0.10





andBr

PPv rM  MP  
001.0007.0

,7.0,0.5,0.10





andBr

PMv r  

0  1   
0  1   

0  1  

1.0 1.590527 -0.592025 2.0 1.731470 -0.733567 1.0 3.034699 -2.046634 

2.0 2.316491 -0.321501 3.0 1.908768 -0.911747 2.0 3.981020 -3.007410 

3.0 3.150922 -0.163653 5.0 2.409879 -1.416097 3.0 4.711782 -3.755229 

4.0 4.052004 -0.079275 10.0 4.032554 -3.064446 4.0 5.319343 -4.381640 

5.0 4.985849 -0.037170 15.0 5.730419 -4.842651 5.0 5.844976 -4.927491 
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Conclusions 

The study considered the MHD flow of a third-grade fluid through an infinite porous channel under the 
influence of external magnetic field by taking into account the effect of induced magnetic field and 
viscous dissipation. The effect of the various physical parameters obtained on velocity, induced 
magnetic, and temperature field as well as skin friction are presented in form graphs and table. 
The presents results obtained are listed below 

1. Velocity of the fluid increases with increasing suction parameter and later decreases as 
magnetic parameter and magnetic Prandtl number increases. This is due to the fact that 
the magnetic and induced magnetic field has apparent effect than suction velocity. 

2. Induced magnetic field decreases with increase in suction parameter due to rising in 
magnetic flux. 

3. An increasing magnetic parameter and magnetic Prandtl number increases the induced 
magnetic field as a result of magnetic field in the fluid produced by induced magnetic 
field itself. 

4. Temperature of the fluid decreases with an increase in suction parameter due to the 
influence of convection in pumping the fluid from the lower region to the centre of the 
channel.  Similarly, the temperature field decreases with increase in Prandtl number 
because of increasing in thermal conductivities which diffuses heat away from the 
heated channel. 

5. Skin friction increases and decreases at lower and upper part of the channel respectively 
as magnetic parameter and magnetic Prandtl number increases. 

 
Recommendations 
The study recommended that the velocity of the fluid and induced magnetic field can be influence  
by modify the suction / injection velocity on the porous channel while making engineering design. 
Further study on this research can be on unsteady flow and numerical method for the solution of the 
equations governed the flow. 
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